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ABSTRACT:

 

Our understanding of the formation, structure, composition, and maturation of the
stratum corneum (SC) has progressed enormously over the past 30 years. Today, there is a growing
realization that this structure, while faithfully providing a truly magnificent barrier to water loss, is a
unique, intricate biosensor that responds to environmental challenges and surface trauma by initiat-
ing a series of biologic processes which rapidly seek to repair the damage and restore barrier homeo-
stasis. The detailed ultrastructural, biochemical, and molecular dissection of the classic “bricks and
mortar” model of the SC has provided insights into the basis of dry, scaly skin disorders that range
from the cosmetic problems of winter xerosis to severe conditions such as psoriasis. With this knowl-
edge comes the promise of increasingly functional topical therapies.
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Introduction

 

The skin serves as a primary defense, a sensory
and excretory organ, and a critical regulator of
body temperature. Its barrier properties extend to
protection from ultraviolet (UV) radiation, oxidants,
microorganisms, and toxic agents. However, in
its most widely appreciated context, the critical
skin barrier function refers to the epidermal bar-
rier to water loss. This permeability barrier resides
within the stratum corneum (SC), the wafer-thin,
most superficial layer of the skin that is the true
interface with the environment and a prerequisite
for terrestrial life itself. A highly specialized struc-
ture, the SC is essentially impermeable to water
except for a small but vital flux that serves to
maintain its hydration, and thereby, its flexibility.
Hydration of the surface layers is also critical to
facilitate desquamation, the process of skin shed-
ding at the skin surface.

 

Stratum corneum structure

 

Until the mid-1970s, the SC was considered to
be a metabolically inactive, homogeneous tissue,
analogous to a plastic film (1). In the ensuing
30 years, scientists have shown that this tissue is
structurally and biochemically diverse, and can no
longer be regarded as inert. As the present author
shall describe, the tissue possesses a limited form
of metabolic activity and, in fact, acts as a unique,
sophisticated biosensor that signals the under-
lying epidermis to respond to external stresses.

At the simplest level, the SC has been likened
to a brick wall in which the non-continuous,
essentially proteinaceous, terminally differentiated
keratinocytes, or corneocytes (bricks), are embed-
ded in the continuous matrix of specialized lipids
(mortar) (2). These lipids provide the essential
element of the water barrier, and the corneocytes
protect against the continuous abrasion by chem-
ical and physical injury. The structure of the stra-
tum corneum is shown schematically in Fig. 1.

The lipid matrix constitutes approximately 20%
of the SC volume (about 15% of the dry weight)
and is the continuous phase of the skin barrier
(3,4). The lamellar bilayer organization of this lipid
matrix was first observed clearly using electron
microscopy to examine ruthenium tetroxide-fixed
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samples (5) (Fig. 2). The SC lipid bilayers are
unique among biological membranes in terms
of composition, organization, and physical pro-
perties. The major lipid species of the SC are
ceramides (about 50% by mass), fatty acids (10–
20% by mass), and cholesterol (25% by mass)
(3,4,6). Small amounts of cholesterol esters and
cholesterol sulfate seem to play a critical role in
normal barrier function (7). Ceramide with omega-
hydroxy fatty acid (O) ester-linked [E] to linoleic
acid and amide-linked to sphingosine (S) [Cer(EOS)]
predominates in the SC and is highly enriched in
linoleic acid, which constitutes a minimum of
20–30% of the omega-esterified fatty acid (8).

The epidermis must have linoleic acid in order to
maintain barrier function. Its absence leads directly
to the dramatically perturbed barrier found in ani-
mals with essential fatty acid deficiency (9,10).

In contrast to the classic cellular membranes
of the epidermis, there are no phospholipids in
healthy SC (4). Ceramides and fatty acids are
characterized by extreme heterogeneity. Currently,
nine classes of ceramides are recognized (11).
Their chemical structures are shown in Fig. 3,
where they are characterized essentially according
to the work of Downing and colleagues (12). The
main fatty acids (primarily saturated) range in
chain length from C

 

14

 

 to C

 

36

 

 with the longer chain
lengths (C

 

20

 

 to C

 

36

 

) predominant (13). The very
long carbon chain lengths of the SC ceramides
and free fatty acids are believed to be the primary
determinant of the unusual (for a biological mem-
brane) physical properties of the SC lipid bilayers.
Norlen and colleagues (13) have speculated that
the existence of such a heterogeneous free fatty
acid lipid subpopulation provides a broad transi-
tion temperature zone comparable to skin surface
temperature, thereby maintaining skin barrier
properties (e.g., transepidermal water loss). It is
now recognized that triglycerides, short-chain
saturated fatty acids, and unsaturated fatty acids,
which are often included in a representation of SC
lipid composition, in fact represent sebaceous
contaminants and are hypothesized to play no
significant role in barrier function (13). Rather,
their presence may serve to disrupt barrier orga-
nization close to the skin surface and facilitate
desquamation (11,14).

Fig. 1. Schematic “bricks and mortar” representation
of the structural and functional components of the
stratum corneum.

Fig. 2. Normal human stratum corneum after ruthen-
ium tetroxide fixation showing domains of lipids (L)
between differentially stained corneocytes (C). A
corneodesmosome (D) is seen between adjacent
corneocytes (bar = 100 nm). Adapted from Madison KC,
Swartzendruber DC, Wertz PW, Downing DT. Presence
of intact intercellular lipid lamellae in the upper layers
of the stratum corneum. J Invest Dermatol 1987: 88:
714–718, courtesy of Blackwell Publishing, Inc.

Fig. 3. Ceramide nomenclature and structures. Adapted
from Robson KJ, Stewart ME, Michelson S, Lazo ND,
Downing DT. 6-hydroxy-4-sphingenine in human
epidermal ceramides. J Lipid Res 1994: 35: 2060–2068.
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The majority of SC lipids are derived from the
contents of the lamellar bodies formed in the
keratinocytes of the stratum spinosum and stratum
granulosum, the uppermost layers of the viable
epidermis. At the interface between the stratum
granulosum and the SC, the extruded phospho-
lipids, sphingolipids, and plasma membrane con-
stituents are enzymatically cleaved as they enter
the SC to generate free fatty acids and ceramides
(16). These components then fuse together to form
the continuous lamellar bilayers characteristic of
the SC. It is estimated that the skin must synthe-
size approximately 100–150 mg of lipid per day
to replace the amount lost in normal desquama-
tion. Therefore, the skin is one of the most active
sites of lipid synthesis in the body (17,18).

Corneocytes have a mean thickness of around
1 

 

µ

 

m and a mean surface area of approximately
1000 

 

µ

 

m

 

2

 

, but ultimately, the surface area is
dependent upon age, anatomical location, and
conditions that influence epidermal prolifera-
tion such as UV irradiation (19). Corneocyte size
increases considerably with age, reflecting the
increased transit time within the SC. On most
body sites, the SC consists typically of 12–16
layers of flattened corneocytes (20).

Each individual corneocyte can be viewed
simplistically as an insoluble protein complex
consisting primarily of a highly organized keratin
macrofibrillar matrix. Within the SC, the keratin—
which can bind substantial amounts of water—is
stabilized through both interkeratin and intra-
keratin filament disulfide bonds, and encapsulated
within a protein shell called the cornified cell
envelope (CE). The CE itself is a 15–20-nm-thick
structure (21) comprising a 15-nm-thick layer of
defined structural proteins and a 5-nm-thick layer
of specialized lipids (22,23). This lipid monolayer,
characterized by long-chain ceramides covalently
bound to the outer aspect of the CE, provides a
hydrophobic interface between the hydrophilic
surface of the CE itself and the highly hydro-
phobic lipid lamellae. The layer, by associating with
the intercellular lipids, helps maintain water bar-
rier function. The CE has been studied extensively
and is now recognized as consisting primarily of
the proteins loricrin, small proline-rich proteins,
and involucrin (24,25). Compositional changes in
this structure may indeed reflect an adaptation
to external mechanical forces (26). The proteins
are cross-linked together by N

 

ε

 

(

 

γ

 

-glutamyl) lysine
isopeptide bonds (27) formed by the action of
the transglutaminase family of enzymes. Other
protein cross-links, such as N

 

1

 

,N
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-bis(

 

γ

 

-glutamyl)
spermidine, and disulfide bonds contribute to the

overall integrity of this structure. Because of its
extensive protein cross-linking, the CE is the most
insoluble structure of the corneocyte. Results of
detailed investigations into the protein organiza-
tion within the corneocyte suggest that elements
of the internal keratin matrix become cross-linked
to the interior aspect of the CE through both
disulfide linkages and the action of transglutaminase
(28). In this manner, the corneocyte structure
itself can be regarded, in essence, as a single,
intricately cross-linked “macro-protein” that im-
parts great strength to each individual corneocyte
and the tissue as a whole.

The results of recent research on the nature of
the corneocyte surface points to further hetero-
geneity, reflecting gradual modification of the CE
protein structure as mediated by transglutami-
nase (29). The identification of two distinct so-called
“fragile” and “rigid” CE populations suggests
subtle modification of the interaction of the lipid
lamellae with the corneocyte structure (29,30). The
heterogeneous nature of the corneocytes making
up the SC can be visualized by the use of specific
probes (29,30) (Fig. 4).

Differences in the nature of the intercellular
lamellae and/or the corneocytes (the major com-
ponents of the bricks and mortar model) provide
the structural basis for the wide variations in

Fig. 4. Preparation of cornified envelopes from human
stratum corneum. Rigid cornified envelopes (CEr)
recognized by their flatter shape and strong staining
with Nile Red are readily distinguishable from the fragile
cornified envelopes (CEf) whose green staining with
anti-involucrin reflects incomplete maturation of the
structure (bar = 50 µµµµm). Adapted from Harding CR,
Long S, Richardson J, et al. The cornified cell envelope:
an important marker of stratum corneum maturation
in healthy and dry skin. Int J Cosmet Sci 2003:25: 157–
167, courtesy of Blackwell Publishing, Inc.
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permeability observed on different body sites (e.g.,
the face versus the legs versus the palms) (31,32).

The overall integrity of the SC itself is achieved
primarily through large numbers of specialized
intercellular protein structures called corneo-
desmosomes (33), which effectively rivet neighbor-
ing corneocytes together both in the plane of the SC
layer and in adjacent layers. Consistent with the
“mortar” analogy, there is good evidence to indi-
cate that lipids also contribute to the intercellular
cement (34,35). Ultimately, however, it is the
corneodesmosomal structures that represent
the primary cohesive force and which must be
degraded to facilitate desquamation. These struc-
tures are composed of certain proteins—such as
desmocollin-1 and desmoglein-1 (36,37)—that are
common to the desmosomal structures in the
viable epidermis. Additional specialized proteins,
in particular corneodesmosin (38,39), play a critical
role in cohesion/dyshesion within the corneo-
desmosomal structure.

The exfoliative process is complex, and must
be carefully controlled to maintain tissue integrity
and thickness (40). Desquamation is facilitated
by the action of several hydrolytic enzymes that
degrade the corneodesmosomal structures in a
specific pattern (41,42). Several serine (43,44),
cysteine (45,46), and aspartic proteases (47,48) are
involved in this process, and at least one of these
enzyme classes appears to be especially adapted
to function in the low-water-activity environment
close to the skin surface (49). However, despite
considerable progress, the precise spectrum of
proteases involved and the coordinated manner
in which they become activated [either through
partial proteolysis (50) or through dissociation
from inhibitors (51)] are still poorly understood.
Although, ultimately, water and pH control the
activity of these proteases because these are local-
ized extracellularly within the lipid bilayers, it is
the changing phase behavior of the intercellular
lipid structure close to the skin surface that may
exert fine control on their activity and on the
degradative process (11).

An essential mechanism that maintains water
balance within the SC, and thus, ensures flexi-
bility and continued activity of the hydrolytic
enzymes just described, is the so-called natural
moisturizing factor (NMF). The term, first coined
by Jacobi in 1959 (52), describes a complex “soup”
of low-molecular-weight, water-soluble compounds.
As will be described later (see pages 43–48 of this
supplement), the NMF generated within the cor-
neocytes is primarily derived from the complete
hydrolysis of an unusual protein called filaggrin

(53). In considering the importance of the NMF, it
should not be forgotten that the highly structured
intercellular lipid lamellae, as well as restricting
water movement through the SC, also effectively
prevents these highly water-soluble compounds
from leaching out of the corneocytes in the
surface layers of the skin.

 

Stratum corneum: biosensor

 

As described, the SC is enzymatically very active:
progressively hydrolysing the corneodesmosomal
linkages, cross-linking CE proteins through trans-
glutaminase, processing lipids, and rapidly hydro-
lysing the protein filaggrin. In fact, the proteolysis
of filaggrin, a process critical to maintaining the
hydration and flexibility of this tissue, is itself
initiated by changes in the water activity within
the SC. The demonstration by Scott and Harding
(54) that this dramatic hydrolysis is initiated
within the SC in response to changes in environ-
mental humidity was one of the earliest insights
into the dynamic, responsive nature of this tissue.

In recent years, several research groups, most
notably the group led by Elias and Feingold  (55–
57), have conducted many studies to show that
water loss through this tissue is a critical homeo-
static signaling mechanism. Perturbation in the
barrier leading to altered water flux sets in motion
a cascade of events within the underlying epi-
dermis to promote barrier repair and recovery. The
results of various studies have suggested that spe-
cific ions, particularly Ca

 

2+

 

, are critically involved
in this process  (58–60). The SC also contains
unusually high levels of certain cytokines, most
notably interleukin 1-alpha and its receptor antag-
onist protein, and these molecules play a role in
signaling to and within the epidermis  (61–63).

 

Perturbation to barrier function

 

A multitude of factors, including disease, diet,
race, and of course, the external environment,
may render the barrier more prone to perturbation
and potentially induce dryness, irritation, or itch.
There is also an age-related decline in the ability
to restore an impaired barrier (64), and psycholog-
ical stress leading to elevated levels of circulating
glucocorticoids has been shown to delay barrier
recovery (65). Furthermore, there is a seasonal
variation in intercellular lipid levels within the SC
(66) that helps to explain the predisposition of
skin to dryness in the winter months. Interestingly,
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there is also a seasonal variation in serum gluco-
corticoid levels (67). Recently, a circadian rhythm
in the homeostatic capacity of the SC barrier was
described (68).

Once perturbed, the loss of barrier function ini-
tiates a variety of signaling cascades to stimulate a
metabolic response within the underlying epider-
mis aimed at normalizing SC function (Fig. 5). The
principal response is a temporary increase in
the biosynthesis of all major lipid species in the
epidermis (i.e., cholesterol, fatty acids, and cera-
mides). Minor barrier perturbations may remain
local to the epidermis. However, repeated or
severe barrier disruption may stimulate signaling
cascades that engage not only the desired epider-
mal homeostatic response, but also inflammatory
events involving the deeper layers of the skin and
the endothelium (69,70). Such changes have been
proposed to play a role in sustaining inflamma-
tory dermatoses. The elicitation of inflammation
as a result of barrier disruption can lead to epider-
mal hyperplasia and abnormal keratinization.
This will lead invariably to the production of an
intrinsically inferior SC, in turn, thus creating a
vicious cycle of events unless the environmental
stress is removed.

 

Barrier dysfunction in skin disorders

 

Atopic dermatitis

 

Widespread regions of dry itchy skin are one of
the most prominent clinical features of atopic
dermatitis (71). Involuntary scratching provoked
by severe itching can lead to a physical disruption

of the SC, thereby exacerbating the intrinsic
weakness in the barrier. Atopic dry skin displays
an impaired barrier function, as indicated by
increased transepidermal water loss (72) and
diminished water-binding properties (73). While not
the primary defect, the impaired barrier function
and surface roughness associated with dryness
may render the skin more susceptible to irritation.
This condition is also associated with significant
decreases in SC ceramide levels (74,75), particu-
larly, Cer(EOS) (76), and the presence of unusual,
possibly diagnostic ceramide species (77). Results
of research over the past 5 years have emphasized
that many aspects of lipid metabolism are deranged
in this condition; patients with atopic dermatitis
have significantly depleted covalently bound omega-
hydroxyceramides (78) and reduced levels of
prosaposin (79), an important regulator of sphingo-
lipid metabolism.

The lowered level of ceramides in patients
with atopic dermatitis has been linked to an
increased expression of the enzyme sphingo-
myelin deacylase (80,81). This enzyme competes
with sphingomyelinase for the ceramide precursor
sphingomyelin. Although sphingomyelinase remains
active in those with atopic dermatitis (82), signifi-
cant levels of sphingomyelin are hydrolysed by
this alternative pathway to release free fatty acid
and sphingosyl phosphoryl choline (81). The pres-
ence of sphingosyl phosphoryl choline may par-
tially explain the inflammation associated with
this disorder since it is a potent modulator of
epidermal function, stimulating proliferation and
up-regulating plasminogen activator (83). The
vulnerability of the SC of atopic patients to colo-
nization by 

 

Staphyloccus aureus

 

 may reflect the
reduced levels of sphingosine present in the tissue
(84) that, in turn, reflects the decreased levels of
ceramide (substrate) and the diminished activity
of its metabolic enzyme, acid ceramidase. The
water content in atopic SC is low, and the free
amino acid content in atopic patients is also sig-
nificantly reduced, which reflects the decreased
numbers of keratohyalin granules (the repository
of the filaggrin precursor protein) seen in the stra-
tum granulosum (85). Recent data from Hirao also
suggests that in atopics (86), as in psoriatics (87),
the CE maturation is incomplete.

 

Psoriasis

 

In this condition, transepidermal water loss levels
are increased between one and 20 times, depend-
ing on the severity of the lesion (88,89). Dramatic
changes in SC lipid structure are also observed

Fig. 5. Representation of the major signaling processes
and events occurring following barrier perturbation of
the stratum corneum.



 

The Stratum Corneum

 

11

 

(90), which reflect both perturbation in delivery of
lipids from the lamellar bodies during SC forma-
tion (91) and overall changes in lipid composition
(88). These changes include increases in ceramide
with non-hydroxy fatty acids (N) and sphingosine
(S) [Cer(NS)], and ceramide with 6-hydroxy-4-
sphingenine (H) and omega-hydroxy fatty acid
(O) ester-linked [E] to linoleic acid [Cer(EOH)],
and decreases in ceramide with alpha-hydroxy fatty
acids (A) and sphingosine (S) [Cer(AS)]. Together
with the altered cholesterol and fatty acids levels,
these alterations contribute to some of the char-
acteristic aberrations in SC function, including
corneocyte cohesion and faulty desquamation. It
has also been reported that the composition of
the covalently bound lipids differs in psoriatic
SC compared with healthy SC. In psoriatic skin,
Cer(OH) decreases while other components
such as 

 

ω

 

-hydroxy acids and fatty acids, particu-
larly the covalently bound oleate and linoleate,
increase (92). As in atopic dermatitis, psoriasis is
also associated with perturbed synthesis of filag-
grin leading to reduced water-binding capacity in
the SC (93).

 

Ichthyoses

 

The characteristic scaling of the common forms
of ichthyosis, namely, ichthyosis vulgaris and
recessive X-linked ichthyosis, can be explained
by discrete defects in barrier formation and integ-
rity. In ichthyosis vulgaris, defective keratohyalin
granule formation (and therefore little or no
filaggrin) leads to the formation of an SC essen-
tially devoid of many components of the NMF
(94). Because of the resulting defective water
binding and possible alterations in skin pH (as
a result of depletion of urocanic acid and pyrroli-
done carboxylic acid), desquamation is severely
perturbed and corneodesmosomes are poorly
degraded (95).

X-linked ichthyosis is characterized by the
desquamation of large, adherent scales. This con-
dition is caused by a deficiency in the enzyme ste-
roid sulfatase (96) that leads to an accumulation
of cholesterol sulfate and a reduction of cholesterol.
This specific defect leads to altered lipid organiza-
tion (97), and is associated with fragmented and
disrupted lamellae in the intercellular domains
(98) and increased cohesion between corneocytes.
Cholesterol sulfate is known to influence many
biological processes. For example, as a critical factor
in SC functioning, it has been shown to induce
transcription of transglutaminase and significantly
inhibit some of the key serine proteases involved

in desquamation (99), contributing further to the
abnormal retention of corneodesmosomes.

The classic scaling seen in lamellar ichthyosis
seems to be the result of either failed formation
of the CE or defective arrangement of the inter-
cellular lipids. Intercellular lamellae membranes are
frequently truncated and fragmented in this
condition, providing a basis for the barrier dys-
function (98). Individuals suffering from lamellar
ichthyosis have a defective gene for transglutami-
nase 1 (100). The inability to link ceramides to the
CE and defective cross-linking within the cornified
CE have been proposed to explain the dramatic
skin phenotype seen in affected individuals.
However, recently obtained data suggesting nor-
mal organization of the covalently bound lipid
layer cast some doubt on the role of this enzyme
in covalently bound lipid attachment (101).

Although the SC lipid profiles in other ichthy-
otic diseases have not been fully determined,
reduced levels of sphingosine have been found in
a variety of patients with various ichthyoses (102).
This decrease in sphingosine may, in part, explain
the underlying cellular hyperproliferation observed
in these conditions since, as has been proposed,
sphingosine may feedback to the epidermis and
down-regulate keratinocyte turnover (103).

 

Surfactant-induced xerosis

 

In our daily life, substances that include chemicals
such as surfactants and solvents potentially perturb
the SC barrier (104). Certain anionic surfactants
such as sodium lauryl sulfate affect not only the
barrier itself, but also the underlying viable cell
layers (105). For example, sodium dodecyl sulfate
up-regulates intercellular adhesion molecules, or
vascular endothelial growth factor, suggesting
that this class of surfactant has an intrinsic abil-
ity to induce epidermal hyperplasia and irritation.
In general, surfactants that bind strongly to SC
proteins have a higher potential to cause signifi-
cant protein denaturation, leading not only to
barrier damage, but also to erythema and itching.

 

Low-humidity-induced winter xerosis

 

Seasonal changes affect the condition of normal
healthy skin and may trigger various cutaneous
disorders. In common dermatitis, a decline in bar-
rier function usually parallels the clinical severity
of the complaint. These conditions all tend to
worsen during the winter season when humidity
is lower (106,107). In soap-aggregated winter xerosis,
abnormalities in SC structure, lipid composition,
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and corneodesmosomal degradation are readily
apparent (108). At the skin surface, decreased exter-
nal humidity, by reducing the water content of the
peripheral SC, can decrease the activity of the
enzymes involved in maturation and desquamation,
leading to skin flaking (for more details, see
pp. 43–48). By weakening the barrier, seasonal
changes in lipid synthesis and in circulating stress
hormones may further exacerbate the condition.
In addition, the results of recent studies, albeit
on mice, suggest that low humidity is directly or
indirectly driving several additional responses
within the underlying epidermis that can subse-
quently initiate an inflammatory response. In the
first instance, exposure to a dry environment may
actually enhance the epidermal permeability
barrier as a response to the environmental change
(57). However, decreases in humidity also drive a
heightened hyperproliferative response to barrier
perturbation (109), and in response to surfactant
(109), initiate mast cell degranulation (110–111)
and amplify the cytokine cascade initiated by
barrier perturbation (112). Although extrapolating
such data to the human condition must be done
with caution, one or more of these processes
probably contributes to the appearance of sore,
chapped human skin on exposed body sites dur-
ing harsh winter months, especially when there is
an abrupt decline in environmental humidity.

 

Conclusions

 

Perturbations to the efficiency of the epidermal
permeability barrier, whether a consequence of
environmental factors or inborn metabolism
error, can have profound effects on overall skin
quality. There is a growing appreciation that a
defective barrier is not simply a secondary con-
sequence, but rather, a critical element driving
inflammation in disorders of cornification (113).
There are many instances where the severity of
the disorder correlates with the degree of barrier
abnormality (e.g., in psoriasis and atopic dermati-
tis), and similarly, where improvements in the SC
barrier function can improve inflammatory dis-
orders (e.g., in winter xerosis, atopic dermatitis,
and psoriasis). Therefore, by understanding the
molecular basis of the barrier perturbation in dry,
flaky skin conditions—ranging from winter xerosis
to psoriasis—we are able to move forward with
increasing confidence to develop specific treat-
ments that, by targeting defined deficiencies,
restore barrier functionality and improve overall
skin quality.
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